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Striving for Efficiency: Optimizing
Electrolyzer Design and Operations

¢ Benefits of in-situ diagnostic techniques:
v' Enhanced understanding of system
performance

v’ The capability to investigate the
Impact of different parameters on
performance
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_— Anode Catalyst Layer  Cathode Catalyst Layer ¢ Electrolyzers use electrical energy to split water (H,0) into
ode mg omain < .
ke hydrogen (H,) and oxygen (O,) through an electrochemical
process at electrodes (containing catalysts)

s Key performance characteristics:
*»» Current density: Analogous to the rate of electrolysis
% Cell Voltage: Analogous to the power required to
sustain a given rate of electrolysis
s Lower electrolyzer efficiency results in a higher loss of
energy as thermal heat

Gas Channel Membrane \ % Gas Diffusion Layer

Porous Transport Layer Microporous Layer

Source: Fornaciari, J. C., et al. (2020). "The Role of Water in Vapor-fed Proton-Exchange-Membrane ’:’ CO m pleXitieS Of Water e le Ct rO lySiS inVO lve the tra nSpO rt Of:
Electrolysis." Journal of The Electrochemical Society 167(10): 104508.
+»» Electrons (related to chemical kinetics)

* Mass (involving ions, reactants and products)
* Thermal energy (heat and temperature)
=+ Cecll polarization
i -+ Cathode activation overpotential

— Anode activation overpotential

e -#-Ohmic (membrane) overpotential
- ~-Reversible cell voltage

Maharudrayya, S., et al. (2006). "Pressure drop and flow distribution in multiple parallel-channel configurations used in
proton-exchange membrane fuel cell stacks." Journal of Power Sources 157(1): 358-367.

N

Cell voltage [V]
=

E
=)

=
=

2 3 4
Current density [A/em?]
Source: Ojong, E. T., et al. (2017). "Development of an experimentally validated semi-empirical fully-coupled
performance model of a PEM electrolysis cell with a 3-D structured porous transport layer." International Journal
of Hydrogen Energy 42(41): 25831-25847.

Ennhancing Electrolysis Efriciency Utilizing
Accessinle and ln-situ Diagnostics

*** Real-time Insights: In-situ diagnostics provide immediate, real-time data,
allowing for a deeper understanding of electrolysis processes as they happen.

*»* Accelerated Research: Distributed measurement diagnostics has the
potential to accelerate research and development efforts at very affordable
costs.
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Efficient Electrolysis: Minimizing
Power, Maximizing Uniformity
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Anode % Efficient water electrolysis goals:
¢ High reaction rates at lower power consumption
+» Uniform distribution of sustained reactions for
system durability and long-term efficiency
curent e % Lower catalyst loadings are needed to reduce capital
Collecter costs associated with hydrogen production

Ly 25 emtactieare *» Optimized system design considerations:

A *» Lower catalyst loadings can lead to increased
losses at higher hydrogen production rates

* May also result in non-uniform distribution of

reactions
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Key Takeaways

» The U.S. aims to achieve a net-zero emissions economy by 2050 and a
carbon-pollution-free electric sector by 2035, which demands rapid
advancement of clean energy technologies like electrolysis.

» The DOE's "1 1 1" Hydrogen Energy Earthshot initiative, targeting $1 per
kilogram clean hydrogen within a decade, underscores the strategic
importance of hydrogen production, driven by technologies such as

electrolysis. j

» Achieving efficient, low-power water electrolysis with uniform reaction
distribution is key for sustainability.

» Challenges emerge with lower catalyst loadings, which affect losses and
reaction distribution.

» Accessible in-situ diagnostics offer a suite of benefits for electrolysis
Research and Development

» Allows in-depth analysis of system physics
» Design optimization

»Real-time insights

» Cost-effective acceleration of research
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